Notizen 525

Isoelectronic Changes in the Behaviour of Nonrelativistic Electron Density Near the Nucleus in Free Ions

K. D. Sen

Physikalische Chemie I, Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstraße 20, D-6100 Darmstadt

Z. Naturforsch. 34a, 525-526 (1979); received January 19, 1979

It is shown numerically that the nonrelativistic Hartree-Fock-Slater total electronic density near the nucleus in $3d^5$, $4d^5$ and $5d^5$ ions can be approximately represented as $A_{\rm N}Z^3\exp(-2Zr)$ where $A_{\rm N}$ is a constant depending on the number of electrons.

The variation of the total electron density, $\varrho(r)$, near the nucleus in free atoms and ions is a relatively little studied property. It has been shown [1] that $\varrho(r)$ calculated within the spin-restricted approximation has a functional dependence near the nucleus as given by

$$\varrho(r) = \varrho(0) \exp(-2Zr), \tag{1}$$

where Z is the atomic number. This relationship has been tested [2] using Hartree-Fock (HF) wave functions for some light atoms. In this note we propose that within an isoelectronic series contain-

Reprint requests to Dr. K. D. Sen. Please order a reprint rather than making your own copy.

0340-4811 / 79 / 0400-0525 \$ 01.00/0

ing N electrons,

$$\varrho'(r) \cong A_N Z^3 \exp\left(-2Zr\right),\tag{2}$$

where $\varrho'(r)$ is the one electron density based on nonrelativistic restricted Hartree-Fock-Slater (HFS) wave functions, and A_N is a constant characteristic of the isoelectronic series. Equation (2) is based on the assumption that $\varrho'(0)$ is approximately hydrogenic in character. We have studied the isoelectronic changes in $\varrho'(0)$ for the following three series of positive ions in $3d^5$, $4d^5$, and $5d^5$ electronic configuration, respectively: Cr+, Mn²⁺, Fe³⁺, Co⁴⁺, Ni⁵⁺, Cu⁶⁺; Mo⁺, Tc²⁺, Ru³⁺, Rh⁴⁺, Pd⁵⁺, Ag⁶⁺; W⁺, Re²⁺, Os³⁺, Ir⁴⁺, Pt⁵⁺, Au⁶⁺.

The HFS radial wave functions, $R_{n1}(r)$, have been generated over a 441 point mesh using a modified Herman-Skillman program [3]. The radial wave functions corresponding to the various s-orbitals are expressed as

$$R_{ns}(r) = \sum_{i=0}^{3} a_{ni} r^{i} \tag{3}$$

at the first four points near the nucleus, and $R_{ns}(0)$ values have been obtained by the extrapolation $r \to 0$. Finally, $\varrho'(0)$ has been calculated according to

$$\varrho'(0) = \frac{1}{2\pi} \sum_{ns} R_{ns}^2(0). \tag{4}$$

Our results of $\varrho'(0)$ along with the shellwise contribution, $\varrho'_{ns}(0)$, are presented in Table 1. The values of $\varrho'(0)/Z^3$ are given in the last column. The

Table 1. The total s-electron density, $\varrho(0)$, for the Fe³⁺, Ru³⁺ and Os³⁺ like ions calculated using HFS wave functions. The hydrogen-like behaviour of $\varrho(0)$ is illustrated in the last column.

Ion	\boldsymbol{Z}	$\varrho_{1s}(0)$	$\varrho_{2s}(0)$	$\varrho_{3s}(0)$	$\varrho_{4s}(0)$	$\varrho_{\mathbf{5s}}(0)$	$\varrho(0)$	$\varrho\left(0\right)/Z^{3}$
Cr ⁺	24	8507.63	766.02	107.88			9381.53	0.68
Mn^{2+}	25	9626.76	877.08	126.78			10630.62	0.68
Fe^{3+}	26	10839.92	998.42	148.58			11986.92	0.68
Co4+	27	12150.72	1130.63	173.20			13454.55	0.68
Ni^{5+}	28	13563.52	1274.07	200.83			15038.42	0.69
Cu ⁶⁺	29	15082.20	1429.36	231.54			16743.11	0.69
Mo^+	42	46173.73	4701.73	839.89	143.95		51859.30	0.70
Tc^{2+}	43	49570.70	5067.46	916.32	163.08		55717.57	0.70
Ru3+	44	53131.34	5451.95	997.42	184.34		59765.01	0.70
Rh4+	45	56859.39	5855.69	1083.47	207.50		64006.05	0.70
Pd^{5+}	46	60756.70	6278.97	1174.50	232.72		68442.89	0.70
Ag6+	47	64828.88	6722.37	1270.66	258.38		73080.29	0.70
$_{\mathrm{W^+}}^{\mathrm{Ag^{6+}}}$	74	254617.88	28051.96	6200.14	1500.75	263.05	290633.77	0.72
Re^{2+}	75	265118.06	29251.41	6486.28	1579.28	287.28	302722.43	0.72
Os^{3+}	76	275907.07	30485.64	6781.37	1661.16	313.68	315148.91	0.72
Ir^{4+}	77	286981.76	31753.10	7085.30	1746.55	342.16	327908.87	0.72
Pt5+	78	298350.62	33056.051	7398.24	1835.21	372.60	341012.72	0.72
Au ⁶⁺	79	310016.26	34394.11	7720.31	1927.44	404.75	354462.87	0.72

526 Notizen

results suggest that the value of A_N in Eq. (2) is given by 0.68, 0.70 and 0.72, respectively, for the $3d^5$, $4d^5$ and $5d^5$ isoelectronic series. We note here that the relativistic effects are important, specially for the $5d^5$ series. However the fact that a simple approximate relationship such as Eq. (2) can be written for the isoelectronic variation of $\varrho'(r)$ near the nucleus is worth noticing.

[1] E. Steiner, J. Chem. Phys. 39, 2365 (1963).

[2] P. Politzer and R. G. Parr, J. Chem. Phys. 64, 4637 (1976). Acknowledgement

The author is grateful to the Alexander von Humboldt Foundation for award of a research fellowship and to the Vice chancellor, University of Hyderabad, India for grant of a special duty leave. He is thankful to Prof. Alarich Weiss for his interst in this work.

[3] F. Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, Englewood Cliffs, N.J. (USA) 1963.